- Gaussianos - https://www.gaussianos.com -

(Posiblemente) La demostración más elemental de la irracionalidad de raíz de dos

A estas alturas de la película creo que es bastante conocido que el número raíz de dos, \sqrt{2}, es un número irracional. Es decir, que no puede expresarse como una fracción con numerador y denominador números enteros.

Hay muchas formas de demostrarlo. De hecho aquí en Gaussianos hemos visto ya varias: la típica que usa reducción al absurdo (junto con una que usa descenso infinito) [1] y una demostración geométrica muy interesante [2]. Hoy vamos a ver la, posiblemente, demostración de la irracionalidad de raíz de dos más elemental que he visto nunca.

Comencemos con ella. Está bastante claro que las únicas posibilidades que pueden darse en una fracción son las siguientes: impar/impar, impar/par, par/impar y par/par.

La opción par/par se puede reducir a alguna de las otras tres, por lo que no es necesario considerarla.

Dicho esto, veamos que ninguna de las tres opciones puede dar como resultado \sqrt{2}. O lo que es lo mismo, que el cuadrado de cada una de ellas no puede valer 2. O lo que es igual, que al elevar al cuadrado cada una de ellas el numerador no puede ser el doble que el denominador. Hasta ahora bien, ¿verdad? Bien, pues vamos caso por caso:

Lo que hemos obtenido es que \sqrt{2} no puede ser igual a ninguno de los tipos de fracciones posibles donde el numerador y el denominador son números enteros. En consecuencia, \sqrt{2} no es un número racional, hecho que unido a que sí es un número real nos lleva a que \sqrt{2} es un número irracional

Sencilla, ¿verdad? ¿Conocéis alguna otra demostración más elemental que ésta?


Esta demostración la he visto en Lanier Post-a-Lot [3] vía este tuit de @4695712 [4].