Teoría de números elemental: Aritmética modular

Aritmética modular

Con las congruencias podemos establecer un conjunto de operaciones aritméticas, como:

Siendo a, b, c, d ∈ Z y m ∈ N, tales que a ≡ b (mod (m)) y c ≡ d (mod (m)). Entonces,

a + c ≡ b + d (mod (m))
a · c ≡ b · c (mod (m))

(Recordemos que el signo ≡ significa “congruente con” y no es lo mismo que el signo = que significa “igual a”)

A partir de esto, podemos definir las propiedades aritméticas para las sumas de congruencias:

  • Propiedad asociativa: a + (b + c) (mod (m)) = (a + b) + c (mod (m))
  • Elemento neutro: Existe un elemento 0 ∈ Zm, tal que a + 0 (mod (m)) = a (mod (m))
  • Elemento opuesto: Existe un elemento b ∈ Zm, tal que a + b = 0 (recordemos que 0 es el elemento neutro de la suma)
  • Propiedad conmutativa: a + b (mod (m)) = b + a (mod (m))

También podemos definir las propiedades aritméticas para el producto de congruencias:

  • Propiedad cancelativa: a · c ≡ b · c (mod (m)) y MCD (m, c) = 1, entonces a ≡ b (mod (m))
  • Propiedad asociativa: a · (b · c) (mod (m)) = (a · b) · c (mod (m))
  • Elemento neutro: Existe un elemento 1 ∈ Zm, tal que a · 1 (mod (m)) = a (mod (m))
  • Elemento inverso: Existe un elemento a-1 ∈ Zm para todo a ∈ Zm con MCD (a, m) = 1, tal que a · a-1 = 1 (recordemos que 1 es el elemento neutro del producto)

Además de todas estas propiedades también se cumple la propiedad distributiva: a · (b + c) (mod (m)) = (a · b) + (a · c) (mod (m))

(Más información en la Wikipedia)

Para acabar, os voy a dar unos ejemplos de usos de las congruencias:

  • En el DNI: La letra de tu NIF se realiza del siguiente modo: Número DNI (mod 23) y el resultado se pasa a una tabla que relaciona números con letras.
  • En la generación de números seudoaleatorios: Los números aleatorios que genera cualquier ordenador se calculan usando una sucesión basada en congruencias: Xn+1 = (a · Xn + c) (mod (m))
  • En criptografía: De este tema os hablaré dentro de poco, por ahora saber que las congruencias son la base de toda la criptografía moderna: RSA, El Gamal, …

Author: fran

6 Comments

  1. Un par de cosillas:

    – a · a-1 = 1 (mod m)
    – Tenéis que retocar el css, el color gris de los blockquotes es muuuuuy parecido al negro, y contrasta muy poco.

    Y una cosa más…

    ¡¡Bien, criptografía!! Auqnue eso lo podríais haber hecho antes de que me presentara ¬¬

    Post a Reply
  2. cumic gracias por la corrección.

    Respecto a los colores, me da que pronto cambiaremos el theme por uno de fondo blanco y fuente negra, además estamos buscando algo para tener las ecuaciones y fórmulas en imagenes.

    Sobre criptografía, haber avisado de cuando te presentabas y me habría puesto las pilas. ;)

    Post a Reply
  3. Bueno, no hizo falta, me puso un 9 :P

    PD: ¡Sabéis en lo que soy bueno! ¡En meter numeritos en cajitas!

    Post a Reply
    • Hola ! Soy maestra y justamente estoy buscando material de criptografia asociado a aritmética modular. Me podrías ayudar con alguna bibliografía?
      Gracias!

      Post a Reply
  4. bueno gracias por la explicación estuvo muy bien yo apenas estoy descubriendo que existe este tipo de matemática aunque tengo mucha curiosidad por el conocimiento matemático no conozco a nadie con quién discutir sobre estos temas mi poco aprendizaje algunos dirían que es vulgar pero bueno esto es algo que me gusta y me entretiene mucho espero un día ordenar mi conocimiento matemático Para estar ex muchas cosas. que me recomiendan Para tener mis ideas en orden y tener un orden en mi aprendizaje

    Post a Reply
  5. hola buenos días soy necesito un concejo. como puede ser la forma mas rápida Para dominar las demostraciones en matemática recientemente me he interesado por esto , cualquier recomendación ayudaría mucho gracias

    Post a Reply

Puedes utilizar código LaTeX para insertar fórmulas en los comentarios. Sólo tienes que escribir
[latex]código-latex-que-quieras-insertar[/latex]
o
$latex código-latex-que-quieras-insertar$.

Si tienes alguna duda sobre cómo escribir algún símbolo puede ayudarte la Wikipedia.

Y si los símbolos < y > te dan problemas al escribir en LaTeX te recomiendo que uses los códigos html & lt; y & gt; (sin los espacios) respectivamente.

Submit a Comment

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.