Comienza la semana, y qué mejor momento que éste para intentar resolver el problema semanal de Gaussianos. Ahí va el enunciado:

Hallar todas las funciones f:\;\mathbb{R} \to \mathbb{R} tales que para cualesquiera x,y \in \mathbb{R} se verifica que

f(x^2+xy+f(y))=f(x)^2+xf(y)+y.

Que se os dé bien.

Print Friendly, PDF & Email